首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   32篇
  国内免费   28篇
化学   391篇
晶体学   1篇
力学   54篇
综合类   3篇
数学   222篇
物理学   180篇
  2024年   1篇
  2023年   50篇
  2022年   20篇
  2021年   13篇
  2020年   23篇
  2019年   20篇
  2018年   16篇
  2017年   29篇
  2016年   18篇
  2015年   20篇
  2014年   28篇
  2013年   67篇
  2012年   47篇
  2011年   49篇
  2010年   37篇
  2009年   39篇
  2008年   45篇
  2007年   42篇
  2006年   31篇
  2005年   40篇
  2004年   44篇
  2003年   27篇
  2002年   13篇
  2001年   11篇
  2000年   17篇
  1999年   11篇
  1998年   10篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   8篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1979年   3篇
  1978年   2篇
排序方式: 共有851条查询结果,搜索用时 15 毫秒
841.
Various fluorogenic probes utilizing tetrazine (Tz) as a fluorescence quencher and bioorthogonal reaction partner have been extensively studied over the past few decades. Herein, we synthesized a series of boron-dipyrromethene (BODIPY)-Tz probes using monochromophoric design strategy for bioorthogonal cellular imaging. The BODIPY-Tz probes exhibited excellent bicyclo[6.1.0]nonyne (BCN)-selective fluorogenicity with three- to four-digit-fold enhancements in fluorescence over a wide range of emission wavelengths, including the far-red region. Furthermore, we demonstrated the applicability of BODIPY-Tz probes in bioorthogonal fluorescence imaging of cellular organelles without washing steps. We also elucidated the aromatized pyridazine moiety as the origin of BCN-selective fluorogenic behavior. Additionally, we discovered that the fluorescence of the trans-cyclooctene (TCO) adducts was quenched in aqueous media via photoinduced electron transfer (PeT) process. Interestingly, we observed a distinctive recovery of the initially quenched fluorescence of BODIPY-Tz-TCO upon exposure to hydrophobic media, accompanied by a significant bathochromic shift of its emission wavelength relative to that exhibited by the corresponding BODIPY-Tz-BCN. Leveraging this finding, for the first time, we achieved dual-color bioorthogonal cellular imaging with a single BODIPY-Tz probe.  相似文献   
842.
A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well-defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench-stable, 18-electron, formally zero-valent nickel–olefin complexes that are competent pre-catalysts in various reactions. Our investigation includes preparations of novel, bench-stable Ni(COD)(L) complexes (COD=1,5-cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene-S-oxide, and fulvene. Characterization by NMR, IR, single-crystal X-ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel-catalyzed reactions underscore the complementary nature of the different pre-catalysts within this toolkit.  相似文献   
843.
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2-dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.  相似文献   
844.
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.  相似文献   
845.
Amide is one of the most widespread functional groups in organic and bioorganic chemistry, and it would be valuable to achieve stereoselective C(sp3)−H functionalization in amide molecules. Palladium(II) catalysis has been prevalently used in the C−H activation chemistry in the past decades, however, due to the weakly-coordinating feature of simple amides, it is challenging to achieve their direct C(sp3)−H functionalization with enantiocontrol by PdII catalysis. Our group has developed sulfoxide-2-hydroxypridine (SOHP) ligands, which exhibited remarkable activity in Pd-catalyzed C(sp2)−H activation. In this work, we demonstrate that chiral SOHP ligands served as an ideal solution to enantioselective C(sp3)−H activation in simple amides. Herein, we report an efficient asymmetric PdII/SOHP-catalyzed β-C(sp3)−H arylation of aliphatic tertiary amides, in which the SOHP ligand plays a key role in the stereoselective C−H deprotonation-metalation step.  相似文献   
846.
Due to the natural abundance of iodine, cost-effective, and sustainability, metal-iodine batteries are competitive for the next-generation energy storage systems with high energy density, and large power density. However, the inherent properties of iodine such as electronic insulation and shuttle behavior of soluble iodine species affect negatively rate performance, cyclability, and self-discharge behavior of metal-iodine batteries, while the dendrite growth and metal corrosion on the anode side brings potential safety hazards and inferior durability. These problems of metal-iodine system still exist and need to be solved urgently. Herein, we summarize the research progress of metal-iodine batteries in the past decades. Firstly, the classification, design strategy and reaction mechanism of iodine electrode are briefly outlined. Secondly, the current development and protection strategy of conventional metal anodes in metal-iodine batteries are highlighted, and some potential anode materials and their design strategies are proposed. Thirdly, the key electrochemical parameters of state-of-art metal-iodine batteries are compared and analyzed to solve critical issues for realizing next-generation iodine-based energy storage systems. Therefore, the aim of this review is to promote the development of metal-iodine batteries and provide guidelines for their design.  相似文献   
847.
848.
Hydrocarbon conversion catalysts suffer from deactivation by deposition or formation of carbon deposits. Carbon deposit formation is thermodynamically favored above 350 °C, even in some hydrogen-rich environments. We discuss four basic mechanisms: a carbenium-ion based mechanism taking place on acid sites of zeolites or bifunctional catalysts, a metal-induced formation of soft coke (i.e., oligomers of small olefins) on bifunctional catalysts, a radical-mediated mechanism in higher-temperature processes, and fast-growing carbon filament formation. Catalysts deactivate because carbon deposits block pores at different length scales, or directly block active sites. Some deactivated catalysts can be re-used, others can be regenerated or have to be discarded. Catalyst and process design can mitigate the effects of deactivation. New analytical tools allow for the direct observation (in some cases even under in situ or operando conditions) of the 3D-distribution of coke-type species as a function of catalyst structure and lifetime.  相似文献   
849.
DFT calculations on the full catalytic cycle for manganese catalysed enantioselective hydrogenation of a selection of ketones have been carried out at the PBE0-D3PCM//RI-BP86PCM level. Mn complexes of an enantiomerically pure chiral P,N,N ligand have been found to be most reactive when adopting a facial coordination mode. The use of a new ligand with an ortho-substituted dimethylamino-pyridine motif has been calculated to completely transform the levels of enantioselectivity possible for the hydrogenation of cyclic ketones relative to the first-generation Mn catalysts. In silico evaluation of substrates has been used to identify those likely to be reduced with high enantiomer ratios (er), and others that would exhibit less selectivity; good agreements were then found in experiments. Various cyclic ketones and some acetophenone derivatives were hydrogenated with er's up to 99 : 1.  相似文献   
850.
Endohedral metallofullerenes (EMFs) are excellent carriers of rare-earth element (REE) ions in biomedical applications because they preclude the release of toxic metal ions. However, existing approaches to synthesize water-soluble EMF derivatives yield mixtures that inhibit precise drug design. Here we report the synthesis of metallobuckytrio (MBT), a three-buckyball system, as a modular platform to develop structurally defined water-soluble EMF derivatives with ligands by choice. Demonstrated with PEG ligands, the resulting water-soluble MBTs show superb biocompatibility. The Gd MBTs exhibit superior T1 relaxivity than typical Gd complexes, potentially superseding current clinical MRI contrast agents in both safety and efficiency. The Lu MBTs generated reactive oxygen species upon light irradiation, showing promise as photosensitizers. With their modular nature to incorporate other ligands, we anticipate the MBT platform to open new paths towards bio-specific REE drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号